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The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge
sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded
parameters and the other (appropriate for aqueous solution) for running simulations. The duality is
intended to treat water-induced electronic polarization with an understanding that fitting data for
bonded parameters will come from quantum mechanical calculations in the gas phase. In this study,
we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded
data set but following more conventional methods for tailoring bonded parameters (harmonic angle
terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters
in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq’s bonded
parameters and runs simulations with the vacuum phase charge set used to derive those parameters.
The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an
incremental improvement over protocols that do not account for the material phases of each source of
their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins
and have varying degrees of success modeling the metastability of short (5–19 residues) peptides. In
this particular case, ff15ipq-Qsolv increases stability in a number ofα-helices, correctly obtaining
70% helical character in the K19 system at 275 K and showing appropriately diminishing content up
to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-livedα-
helices in simulations of aβ-hairpin, and increasing the likelihood that the disordered p53 N-terminal
peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv
parameter development strategy, which has the hallmarks of strategies used to develop other popular
force fields, and may explain some of the need for manual corrections in this force fields’ evolution.
In contrast, ff15ipq-Vac incorrectly depicts globular protein unfolding in numerous systems tested,
including Trp cage, villin, lysozyme, and GB3, and does not perform any better than ff15ipq or
ff15ipq-Qsolv in tests on short peptides. We analyze the free energy surfaces of individual amino
acid dipeptides and the electrostatic potential energy surfaces of each charge model to explain the
differences.Published by AIP Publishing.https://doi.org/10.1063/1.4985866

I. INTRODUCTION

A major focus in the development of biomolecular force
fields has been the accurate modeling of electrostatic interac-
tions in the presence of solvent. Models in which the atomic
charges are fixed must therefore incorporate the effects of sol-
vent polarization. Such effects have long been incorporated
by fitting charges to mimic a molecule’s electrostatic poten-
tial computed at the Hartree-Fock level of quantum theory
with a small 6-31G* basis set: such calculations generally
over-polarize molecules, approximating the effect of surround-
ing water in quantum calculations on the isolated systems.1

The common HF/6-31G* electrostatics seen in the Cornell

a)Author to whom correspondence should be addressed: dscerutti@gmail.com.
Telephone: (732) 445-0334. Fax: (732) 445-5958.

line of Amber force fields2–4 are also a benchmark for charge
design in the AM1-BCC approximation5,6 of the generalized
Amber force field.7,8 Other approaches to capturing the elec-
trostatic character of molecules include the route taken by
CHARMM,9 optimizing partial charges towards interaction
energies of amino acids and individual water molecules (again
computed by quantum methods), or an empirical route taken by
the line of OPLS force fields,10–12 optimizing partial charges
with Lennard-Jones parameters to mimic the bulk properties
of neat small molecule liquids. The latter approach harkens to
the derivation of the water models; these force fields depend
on to perform biomolecular simulations.

Recently, we released ff15ipq,16 a protein force field built
on the implicitly polarized charge model.25 The goal of the
project is not simply to provide new protein force fields, of
which there are many4,12,13 but also to demonstrate a set of
physical assumptions and a workflow that converges to robust
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molecular models by leveraging cluster computation rather
than human effort. Validation was more extensive for ff15ipq
than its predecessor ff14ipq, and while the physical basis of
the two force fields was the same, the ff15ipq parameter set
was completely reformulated, save for bond stretching terms
and heavy atom van der Waals parameters, using our auto-
mated fitting tools. Surpassing its predecessor, ff15ipq gave
accurate descriptions of several globular proteins, metastable
peptides, and disordered proteins on time scales of several
µs. ff15ipq also reproduced Ala-5J-coupling constants more
accurately than a force field fitted directly to reproduce these
results, presumably because our data fitting included angle
terms rather than dihedrals alone.4 The force field stands out
among contemporary protein models because it comprises two
distinct sets of charges for every amino acid: one describing the
amino acid’s electrostatic field in the gas phase and the other
describing the field of the hydrated molecule. Only the latter
is used in actual simulations: ff15ipq is a fixed charge model
with a mean field description of the polarization, compatible
with many simulation packages that do not treat polariza-
tion explicitly.14,15 The vacuum phase charge set is retained
for fitting bonded parameters and is central to a workflow
that we hope will make force fields less reliant on human
intervention.

The choice of pairing bonded parameters derived from
vacuum potential energy surfaces with charges derived to
approximate solution phase conditions was a compromise
aimed at combining two well-defined sets of information in
a thermodynamically defensible way. With little approxima-
tion, in vacuoquantum mechanical (QM) calculations can map
the potential energy surface of a molecule in the gas phase by
collecting ensembles of conformations and their correspond-
ing single-point energies. Given a set of atomic partial charges
and van der Waals parameters, the gas-phase potential energy
surface is a rich source of information for developing bond,
angle, and torsion parameters. The implicitly polarized charge
scheme converges to an optimal fixed charge representation of
a molecule in a polarizing medium such as water. However, the
interactions of dipoles at either end of the molecule constitute a
major part of the potential energy surface, and if these charges
are given solution phase character, the bonded parameters may
become optimized to counteract the additional polarization
and return the overall energy surface towards its gas phase
values. In making the complete IPolQ protein force fields, we
therefore took the additional approximation that the energetic
consequences of immersing the solute in water are primarily
electrostatic, expressed the IPolQ charges as a perturbation
of the gas phase charges, and fitted bonded parameters in the
context of the gas phase charges. The hope was that including
the additional polarization after bonded parameter develop-
ment would correctly model the system’s overall behavior in
solution.

This study quantifies the effects of our approximations by
running additional simulations using versions of the ff15ipq
force field as it would have been had we not included the
additional polarization in our production simulations (ff15ipq-
Vac), and as it would have been had, we included the
additional polarization while fitting the bonded parameters
(ff15ipq-Qsolv). The first variant models solvated proteins

with gas phase charges, while the second risks having its
bonded parameters oppose the solution-phase characteristics
of its charge set when sampling the local structure such as
side chain conformations or secondary structure preferences.
Although there are definitely limits to our sampling abilities,
and none of the three force fields is completely successful
on this slate of structural and dynamic tests, we find that the
IPolQ scheme is more than simply philosophically superior
to the other approaches. We make further analyses in terms
of the microscopic electrostatics and local free energy sur-
faces that each scheme produces. Importantly, we find that
none of the schemes are well-differentiated on time scales
less than 0.5µs, perhaps indicating the extent to which a
high quality data fitting protocol can produce reliable force
fields, as well as the subtle effects of the underlying physics.
We hope that the results will be pertinent to the ongoing
debate over the costs and benefits of more complex molecular
models.

II. METHODS
A. Preparation of ff15ipq-Vac

As explained in the preceding study,16 the ff15ipq force
field was, like its predecessor ff14ipq,18 derived with a pair
of coupled charge sets appropriate for molecular representa-
tions in the gas phase and solution phase, respectively. The
gas phase charge setQVac was used to fit over 60 new angle
and 700 torsion parameters for ff15ipq by optimizing the
parameters to reproduce some 265 000 quantum single-point
energies of various amino acids and short peptides collected
at the MP2/cc-pvTZ level of theory. The angle terms and tor-
sion parameters, fitted to reproduce the gas-phase quantum
energy surfaces in the context of the gas-phase charge set,
were then combined with the solution phase charge set for pro-
duction simulations, under the assumption that the energetic
consequences of solvating the peptides were predominantly
electrostatic. As such, no additional work was necessary to
derive ff15ipq-Vac for this study: the charge set was simply
swapped back to the gas-phase charges that had already been
derived, producing a force field that is optimized at multiple
levels to reproduce the behavior of amino acids and peptides
in vacuo.

B. Preparation of ff15ipq-Qsolv

In developing ff15ipq-Qsolv, we did not deem it suffi-
cient to simply reoptimize the same angle terms and torsion
parameters in the context of the solution-phase IPolQ charges
QIPol based on the original 265 000 peptide single point ener-
gies. We did use the bonded parameters as an initial guess,
but another critical aspect of the IPolQ force fields is the
notion of parameter convergence by iterative rounds of opti-
mization and force-field guided structure manipulation. This
iterative optimization was not necessary in the case of ff15ipq-
Vac because the parameters were already converged with
respect to the vacuum-phase charge set. A complete charge
set replacement would dramatically influence the potential
energy surface and perhaps result in artificial minima. We
therefore took the initial guess for ff15ipq-solv and used it
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to reoptimize approximately 5% of the ff15ipq training set,
including 1000 Ace-Ala-Ala-Ala-Nme tetrapeptide conforma-
tions, 800 Ace-Gly-Gly-Gly-Nme tetrapeptide conformations,
various conformations of all individual amino acid dipeptides,
and assorted tripeptides. While it may seem like a relatively
small portion of the training set to support a complete re-
derivation of over 700 torsion parameters and 60 backbone
angle terms, the original data set already had very good cov-
erage of the conformational space: rather, the purpose was
to guard against the minute chance that traps in the new
potential energy surface could lead to structures with dras-
tically lower estimated energies than the quantum benchmark
would portray. The model obtained by optimizing the ff15ipq
bonded parameter set with the additional peptide conforma-
tions and single-point energies, in the context ofQIPol as found
in the distributed form of ff15ipq itself, is hereafter called
ff15ipq-Qsolv.

C. Equilibrium molecular dynamics simulations

Equilibrium molecular dynamics (MD) simulations were
carried out according to the protocols used in the original
ff15ipq study, for similar lengths of time, temperatures, and
choices of systems.16 Briefly, simulations of 4µs were car-
ried out for all proteins studied with the original ff15ipq; this
time employing each of the ff15ipq-Vac and ff15ipq-Qsolv
force fields. For many systems, equilibrium simulations at a
range of temperatures were conducted to examine folding sta-
bility, a critical aspect of the present work which mirrors the
original study. Some simulations of small globular proteins
were extended to 10µs in the original study: here, we chose to

extend simulations of twoα-helical peptides to obtain better
convergence in their structural propensities.

III. RESULTS
A. Secondary structural preferences of short peptides

The purpose of fitting parameters for a force field is to
extrapolate details of the potential energy surfaces of small
systems to the behavior of much larger ones composed of
the same building blocks. The IPolQ charges in each of our
force fields were fitted against dipeptides of each natural
amino acid, and the fitting data for angle and torsion param-
eters comprised dipeptides, tripeptides, and some tetrapep-
tides. A tetrapeptide can form the simplest unit of anα-helix,
but none of the systems used to create fitting data could
form anything like aβ-hairpin. The smallest peptide system
that we examined, Ala5, was scarcely larger than some of
the systems in our quantum data set. Larger peptides in the
canonical force field’s validation set included longer, meta-
stableα-helical oligomers with relatively few unique residues:
K19 and AAQAA3. The β-hairpin peptides we examined,
in contrast, comprised much richer sequences of different
residues.

Reproduction of NMRJ-couplings in the Ala5 pentapep-
tide system was overall satisfactory by all three force fields, as
shown in Table I. Each produced a very lowχ2 score by the
Karplus equation using its original coefficients, with the pub-
lished ff15ipq scoring the best. According to two other sets
of Karplus parameters derived by density functional theory
(DFT), however, ff15ipq-Vac and ff15ipq-Qsolv appear to

TABLE I. NMR J-couplings for the Ala5 peptide computed with three different variants of ff15ipq. Values for the
canonical ff15ipq are copied from our previous work. A total of 6µs aggregate trajectories were collected for each
force field in the isothermal, isobaric ensemble. Adapted from K. T. Debiec, D. S. Cerutti, L. Baker, D. A. Case,
A. Gronenborn, and L. T. Chong, J. Chem. Theory Comput.12, 3926–3947 (2016). Copyright 2016 American
Chemical Society.

Simulation
Canonical/ff15ipq-Vac/ff15ipq-Qsolv

J-coupling Residue Orig.a DFT-1b DFT-2b Experiment

1J(N, Cα) 2 11.4 / 11.3 / 11.4 11.4 / 11.3 / 11.4 11.4 / 11.4 / 11.4 11.36± 0.59
1J(N, Cα) 3 11.1 / 10.9 / 11.1 11.1 / 10.9 / 11.1 11.1 / 10.9 / 11.1 11.26± 0.59
2J(N, Cα) 2 8.6 / 8.6 / 8.5 8.6 / 8.6 / 8.5 8.6 / 8.6 / 8.5 9.20± 0.50
2J(N, Cα) 3 8.6 / 8.4 / 8.4 8.5 / 8.4 / 8.4 8.5 / 8.4 / 8.4 8.55± 0.50
3J(C, C) 2 0.7 / 0.8 / 1.0 0.5 / 0.6 / 0.9 0.6 / 0.7 / 1.0 0.19± 0.22
3J(Hα , C) 2 1.6 / 1.7 / 1.7 1.3 / 1.4 / 1.5 1.5 / 1.6 / 1.7 1.85± 0.38
3J(Hα , C) 3 1.8 / 2.1 / 1.8 1.6 / 1.9 / 1.7 1.8 / 2.0 / 1.9 1.86± 0.38
3J(HN, C) 2 1.3 / 1.3 / 1.3 1.3 / 1.4 / 1.4 0.9 / 1.0 / 1.1 1.10± 0.59
3J(HN, C) 3 1.2 / 1.2 / 1.2 1.2 / 1.3 / 1.3 0.9 / 1.0 / 1.0 1.15± 0.59
3J(HN, Cβ ) 2 2.1 / 2.0 / 1.8 4.1 / 3.8 / 3.3 3.2 / 3.0 / 2.6 2.30± 0.39
3J(HN, Cβ ) 3 2.0 / 1.9 / 1.7 3.8 / 3.4 / 3.1 3.0 / 2.7 / 2.5 2.24± 0.39
3J(HN, Hα) 2 5.3 / 5.5 / 6.0 4.8 / 5.0 / 5.6 5.5 / 5.6 / 6.2 5.59± 0.91
3J(HN, Hα) 3 5.7 / 6.0 / 6.4 5.3 / 5.6 / 6.1 5.9 / 6.1 / 6.6 5.74± 0.91
3J(HN, Cα) 2 0.6 / 0.6 / 0.7 0.6 / 0.6 / 0.7 0.6 / 0.6 / 0.7 0.67± 0.10
3J(HN, Cα) 3 0.6 / 0.6 / 0.7 0.6 / 0.6 / 0.7 0.6 / 0.6 / 0.7 0.68± 0.10

Meanχ2 0.5 / 0.8 / 1.3 2.9 / 2.1 / 1.8 1.1 / 0.9 / 1.2

aOriginal Karplus coefficients used by Graf.21

bDFT-based Karplus coefficients from Case.28
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TABLE II. Secondary structure propensities of the central residues in penta-
alanine. Results complement theJ-couplings in Table I. All definitions below
entail periodicity in the regions, but the range of each angle is shifted to
keep the definitions as contiguous as possible. Errors in each population are
computed by four-fold block averaging of the 6µs aggregate trajectories.
Adapted from K. T. Debiec, D. S. Cerutti, L. Baker, D. A. Case, A. Gronenborn,
and L. T. Chong, J. Chem. Theory Comput.12, 3926–3947 (2016). Copyright
2016 American Chemical Society.

Percent secondary structure type

Force field α-helixa β-sheetb Poly-Pro IIc L − α helixd

Canonical 8.0± 0.5 10.7± 0.4 71.3± 1.3 5.0± 0.8
ff15ipq-Vac 14.5± 1.0 14.5± 0.3 57.0± 2.2 8.3± 2.3
ff15ipq-Qsolv 14.9± 1.2 24.3± 0.5 50.8± 1.0 1.9± 0.6

aα-helices are defined with (−160◦ ≤ φ ≤ −20◦, −120◦ ≤ ψ ≤ 50◦).
bβ-sheets are defined with (−180◦ ≤ φ ≤ −110◦, 50◦ ≤ ψ ≤ 240◦) or (160◦ ≤ φ
≤ 180◦, 110◦ ≤ ψ ≤ 180◦).
cPoly-Pro II conformations are defined with (−90◦ ≤ φ ≤ −20◦, 50◦ ≤ ψ ≤ 240◦).
dL − α helix conformations consist of (0◦ ≤ φ ≤ 90◦, 50◦ ≤ ψ ≤ 240◦).

have improved over the canonical force field. As before, the
most significant sources of discrepancy were the 3-J-HNCβ
and 3-J-CC terms. Judging byφ andψ distributions of the
central residue, Table II shows that the distributions of occu-
pancy in basins corresponding to major secondary structures
were also affected by the choice of charge model and torsion

parameter development. (Ala5 is too small to form anα-
helix, let alone aβ-hairpin. Nonetheless, its backbone is
nearly always found in conformations corresponding to one
of the major secondary structures of the Ramachandran
plot.) All force fields depictedα-helical andβ-sheet basin
occupancies as minor conformations in the ensemble, but
ff15ipq-Vac showed somewhat more of these two structures,
apparently at the expense of the Poly-Proline II (PPII) pop-
ulation. The drop in the PPII population was greater than
the gain in the populations of other defined regions of the
Ramachandran plot, with the increase inL − α helical con-
tent accounting for the missing population. The changes were
more striking for ff15ipq-Qsolv: β-sheet content more than
doubled over the canonical ff15ipq’s distribution, and PPII
content was down even further. While all three force fields pro-
duce strong scores on theJ-coupling analysis, PPII has been
measured to account for 80% of the Ala5 population19,20 and
66% of the centermost residue:21 the canonical force field is
much closer to either of these experimental results than either
variant.

The changing equilibria of alanine were also pertinent to
new simulations of the peptides K19 and AAQAA3. Both sys-
tems consist of repeats with four alanine residues punctuated
by lysine and glutamine, respectively, and are expected to be
meta-stable at room temperature22,23with decreasing stability

FIG. 1. Helical propensity of
AAQAA 3 and K19 under the canonical
ff15ipq and two alternative force fields.
Each system is plotted in its own
column while different panels present
different force field variants. Error
bars represent one standard deviation
of the helical propensity of each
residue, averaged over four simulations
with 3 µs of production each. In
AAQAA 3, the color scale purple> blue
> green > yellow > orange> red
indicates simulations at temperatures
of 280 K–330 K. In K19, the same
color scheme represents temperatures
of 275 K–325 K. Circles represent
experimental helical propensities at the
color-indicated temperatures.
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as the temperature rises. In our previous study, we simulated
each system at several temperatures spanning a 50 K range
but were unable to obtain convergent ensembles for either
system in 4µs of equilibrium molecular dynamics at each
temperature.16 Stronger sampling at the lower end of the tem-
perature range could have been obtained with a method such as
temperature replica exchange molecular dynamics (REMD),24

perhaps by running the six replicas together and swapping their
states periodically. However, our interest in folding propensity
over the entire range would not have been any better served by
this approach, as indicated by the limited sampling in the 325 K
run. In order to truly improve the sampling, it would have been
necessary to extend the temperature range much higher, per-
haps to 425 K, and this would have required roughly three
times as much aggregate simulation time to maintain additional

replicas above 325 K. We therefore performed quadruplicate
4 µs equilibrium simulations of each peptide using ff15ipq and
our two variants, discarding the first 1µs of each run for equi-
libration. The results are shown in Fig. 1. The extended simu-
lations lend certainty to the conclusion that ff15ipq-Qsolv
stabilizedα-helical structure in AAQAA3, but the helical
content was too great. The results for the lysine-studded K19
parallel those of AAQAA3: the canonical ff15ipq had roughly
the same helical propensity as ff15ipq-Vac, but ff15ipq-
Qsolv significantly increased the helical content, in line with
results from the penta-alanine simulations. For K19, both the
helical content and the melting curve were well depicted by
ff15ipq-Qsolv.

To further investigate the details of each residue’s free
energy surface and its contribution to the stability in each

FIG. 2. Potentials of mean force for key amino acids in helical systems. Umbrella sampling on Ace-Ala-RES-Ala-Nme tetrapeptides, where RES = (Ala, Gln,
Lys) indicates the free energy surface of the central residue’s major backbone dihedrals in plots that can be compared to Ramachandran diagrams. Each residue
occupies a row of the above panels, while different force fields are displayed in separate columns. ff15ipq-Vac and ff15ipq-Qsolv landscapes are displayed as
difference plots relative to the canonical model. The inset box in each panel indicates theα-helical region as defined for calculating helical propensity in Fig. 1.
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helical peptide, we computed two-dimensional potentials of
mean force (PMF) for alanine, glutamine, and lysine in Ace-
Ala-X-Ala-Nme tetrapeptides at 298 K using 36 windows
in each of theφ and ψ backbone angles with all three
force fields. Each PMF and the differences in either variant
relative to the canonical ff15ipq are shown in Fig. 2. The energy
landscapes were more sensitive to determining bonded param-
eters in the context of the polarized charge set than omitting the
polarized charges from simulations and in line with the obser-
vation that ff15ipq-Qsolvproduced more dramatic changes in
AAQAA 3, K19, and the populations of major secondary struc-
tures in penta-alanine. Theα-helical basin, indicated by boxes
in the figure, was deepened in alanine as depicted by ff15ipq-
Qsolv but not as much by ff15ipq-Vac. A similar effect was
evident in glutamine, but the changes in the lysine energy land-
scape, though more severe, did not clearly indicate an overall
change in theα-helical propensity. The concerted effects of
alanine and glutamine, in contrast to having only alanine driv-
ing helical folding in K19, could explain why ff15ipq-Qsolv
overestimated helicity in AAQAA3 but predicted the correct
amount in K19.

For completeness, we attempted to quantify theβ-sheet
character of each force field using the GB1 hairpin system.
In contrast to the helical peptides, GB1 hairpin contains ten
different residues (sequence GEWTYDDATKTFTVTE) and
its behavior is therefore harder to reduce to individual amino
acids. As shown in Fig. 3, all of the force fields depicted hairpin
unfolding and refolding at various temperatures, but the 4µs
simulations are far from converged. Even in this system
of many different residues, there appeared to be a greater

population ofα-helix, and of theβ-hairpin’s native fold, in
the simulations run with ff15ipq-Qsolv than with each of
the other models. The canonical ff15ipq did exhibit someα
helical contents at 285 K and 325 K, but simulations with
ff15ipq-Qsolv showed more residues forming the helices,
and the helices persisted for more than 1.5µs as opposed to
300 or 500 ns under the canonical force field. Theβ-hairpin
could also be very long lived and stable under ff15ipq-Qsolv,
but once a significant amount ofα-helix formed, there were
no examples in our simulations of the hairpin refolding. It
is possible that both secondary structures were stabilized in
ff15ipq-Qsolv and thatα-helix was overall dominant, but
we did not have the resources to pursue additional tests on
the hairpin or potentials of mean force for all the residues
composing it.

B. Results for globular proteins

Small globular protein systems simulated on the time scale
of severalµs further distinguish the canonical and variant
ff15ipq models. Of the proteins GB3, ubiquitin, lysozyme,
and villin, all except ubiquitin show notably higher backbone
positional root mean squared deviation (rmsd) when simulated
with ff15ipq-Vac as opposed to the canonical ff15ipq, but the
differences tend to manifest themselves only after hundreds
of ns to 1µs. The differences between ff15ipq-Qsolv and
the canonical force field were not as pronounced, as shown
in Fig. 4, with the exception that ff15ipq-Qsolv appeared
to cause lysozyme to deviate slightly more from its X-ray
structure than the canonical force field.

FIG. 3. Secondary structures of the
GB1 hairpin in simulations at six differ-
ent temperatures. The color scheme is
drawn from our previous publication.16

Each of the 18 panels has an implicit
scale, starting with residue 1 on the
bottom and proceeding to residue 16 on
the top to show the secondary structure
of each residue at any time in the
simulation. Adapted from K. T. Debiec,
D. S. Cerutti, L. Baker, D. A. Case,
A. Gronenborn, and L. T. Chong, J.
Chem. Theory Comput.12, 3926–3947
(2016). Copyright 2016 American
Chemical Society.
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FIG. 4. Backbone positional rmsd of four small proteins at or around 300 K. Results for the canonical ff15ipq and two variants, ff15ipq-Vac and ff15ipq-Qsolv,
are shown in black, gold, and purple, respectively. Adapted from K. T. Debiec, D. S. Cerutti, L. Baker, D. A. Case, A. Gronenborn, and L. T. Chong, J. Chem.
Theory Comput.12, 3926–3947 (2016). Copyright 2016 American Chemical Society.

Simulations of the Trp cage miniprotein at a variety of
temperatures indicate that ff15ipq-Vac allows the protein to
unfold at most temperatures via a similar pathway to that
observed in our earlier study on the canonical form at higher
temperatures (Fig. 5). The proline cage surrounding the tryp-
tophan residue opens up, and further unfolding occurs when
the N-terminalα-helical segment unwinds, a process which
appears to be much slower to reverse or perhaps irreversible.
This process occurred in simulations with all three force fields
but with different temperature dependence. Just as ff15ipq-
Qsolv depicted the correct room-temperature stability for the
other small proteins, it also tracked the canonical ff15ipq in
terms of the folding behavior of the Trp cage over the 275-325
K temperature range. Two exceptions to the trends in either
variant force field were seen: the ff15ipq-Qsolv simulation
unfolded for 600 ns at 275 K and the ff15ipq-Vac simulation

appeared mostly stable at 295 K. The unfolding at 275 K by
ff15ipq-Qsolv mostly resolved itself by the end of the simu-
lation, and the ff15ipq-Vac simulation at 295 K finished with
signs of unfolding in the proline cage like those that eventually
led to unfolding at the other temperatures. While there remains
some ambiguity in the results at 4µs of elapsed simulation
time, none of the simulations anywhere on the temperature
range would have yielded conclusive results after only 1µs.

One other system simulated during validation of the
original ff15ipq had both a small peptide and a large pro-
tein: the N-terminal peptide from p53 and its binding protein
mDm2. Results for the protein are not plotted but consistent
with the result from the canonical force field: the backbone
did not change shape significantly over the course of 4µs
simulations using either force field variant when simulated
with the peptide bound, and backbone positional rmsd from the

FIG. 5. Backbone positional rmsd for the Trp cage miniprotein over a range of temperatures and force field variants. The color scheme follows Fig. 4. Adapted
from K. T. Debiec, D. S. Cerutti, L. Baker, D. A. Case, A. Gronenborn, and L. T. Chong, J. Chem. Theory Comput.12, 3926–3947 (2016). Copyright 2016
American Chemical Society.
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FIG. 6. Secondary structures of p53N-
terminal peptide under each force field.
The scale on each panel is explicitly
labeled in this figure as there is only
one simulation temperature (298 K).
Secondary structure of any residue on
the y-axis at any time on thex-axis
may be read from the color in the plot.
Simulations concern the free peptide.
When bound to mDm2, residues 19-26
form a stableα-helix. Adapted from
K. T. Debiec, D. S. Cerutti, L. Baker,
D. A. Case, A. Gronenborn, and L. T.
Chong, J. Chem. Theory Comput.12,
3926–3947 (2016). Copyright 2016
American Chemical Society.

FIG. 7. Solvent-induced polarization effects for three amino acids as predicted by MP2/cc-pvTZ calculations. The color scale in the figure spans a range of
±5 kcal/mol in the top two rows of panels and±10 kcal/mol in the lowest row of panels. Green circles in each panel highlight the methyl group of the leading
Ace residue of each amino acid dipeptide: the side chain and tailing Nme residues are then easy to identify. Twoviewsare shown for alanine and lysine while
two conformationsof glutamine are presented. Electrostatic potential isosurfaces are plotted throughout the solvent accessible volume, including that volume
which might be accessible to water hydrogen atoms. The roughened surfaces surrounding each molecule trace the solvent accessible boundary.
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FIG. 8. Solvent-induced polarization effects for glutamate as predicted by
MP2/cc-pvTZ calculations. The color scheme follows from Fig. 7 with a
range of±10 kcal/mol-e. Two conformations of the dipeptide are presented.

crystallographic structure was consistent between 1.1 Å and
1.2 Å with standard deviation 0.1 Å. When simulated alone,
however, the peptide did show divergent behavior when sim-
ulated with the variant force fields. When simulated with the
canonical ff15ipq in our earlier study, the peptide showed no
propensity to formβ-sheets, and only transient occupancy of
theα-helical structure. In contrast, ff15ipq-Vacdepicted some
propensity for residues at either end of the peptide to adopt
anti-parallelβ-sheet character for approximately 20% of the
simulation (see Fig. 6): the p53 peptide took on a fold like
a β-hairpin for part of the simulation. Echoing the results for
K19, ff15ipq-Qsolv depicted additionalα-helical content: up
to 25% in four of the central residues. In contrast to K19 and
AAQAA 3, the p53 N-terminal peptide comprises 10 distinct
amino acids in its 15-residue sequence. While they continue
a trend inα-helical content among the various force fields,
these differences are difficult to quantify, and the most impor-
tant result for all three models is that the peptide remained
predominantly disordered in the absence of mDm2.

C. Analysis of the vacuum and solution-phase
charge sets

An alternative method of assessing the viability of each
force field development protocol is to analyze the quality of
data fitting obtained in each case. Force field studies typically
report metrics such as the standard deviation of molecular
mechanics energies in their final model, relative to the quan-
tum benchmark. As parameter sets have grown and matured,
these errors have diminished, but subtle differences in the

FIG. 9. Solvent-induced polarization by molecular mechanics partial charges in ff15ipq. Plots indicate the difference in electrostatic potentials projected by
solution phase charges used for simulations with ff15ipq and ff15ipq-Qsolv and that projected by gas phase charges in ff15ipq-Vac. The color scheme matches
Figs. 7 and 8 with a range of±10 kcal/mol-e. A rough correspondence of the±5 kcal/mol-e lobes of this figure with the±10 kcal/mol-e lobes of Figs. 7 and 8
can be seen. All poses and view zooms are consistent between the figures.
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protocols make such numbers hard to compare across different
force field families. Here, we have three different force fields
with the same parameter space, similar data sets, and a self-
consistent development protocol that is deterministic in the
limit of many refinement cycles. Correlating specific results in
simulations with the details of the underlying physical approx-
imations is one of the most difficult problems in force field
development, but the three force fields we have prepared for
this study present a rare opportunity.

The difference in vacuum and solution phase electrostatic
fields around any of the amino acids can be mapped by sub-
tracting the grids obtained from our MP2/cc-pvTZ calculations
for any of the amino acids. We will first focus on alanine, glu-
tamine, and lysine, as shown in Fig. 7—these amino acids
compose the K19 and AAQAA3 systems discussed earlier
and include non-polar, polar, and charged amino acids. The
method is detailed in our previous publications:18,25 briefly,
the polarized charge setQVac is obtained from MP2/cc-pvTZ
calculations in the presence of an extensive set of point charges
taken directly from, or if very close to the molecular surface
fitted to mimic the electrostatic field of, a time-averaged dis-
tribution of explicit water molecules obtained from molecular
dynamics simulations as they move about the rigid solute. Due
to the electronic polarization induced by these charges, a pro-
ton test charge will have a±2.5 kcal/mol difference in potential
energy as far as 6 Å from heavy atoms of the each dipeptide we
tested: well into the second shell of water molecules. Differ-
ences of±5 kcal/mol fill the volume of the first shell of water
molecules, and protons in the first hydration layer could have
their potential energies altered by up to±10 kcal/mol due to
electronic polarization. Another striking feature of Fig. 7 is that
the differences in electrostatic potential follow the orientations
of carbonyl groups, as is evident in the lower right panel when
the backbone of glutamine takes on aβ-sheet arrangement and
the side chain head group is decorrelated.

The influence of polarization in the carbonyl groups is
reinforced by findings for glutamate. Figure 8 shows an over-
lap of the carboxylate head group orientation and anα-helical
backbone arrangement: electronic polarization changes the
potential energy surface by more than 10 kcal/mol for a pro-
ton test charge throughout the first hydration shell. Solvent-
induced polarization in the carboxylate head group creates
perhaps the strongest differences in the electrostatic field of
any natural amino acid: comparing the lower panel of Fig. 8
to the lower row of panels in Fig. 7 (note that the color
scale of these panels matches, plotting isosurfaces of±5.0 and
±10.0 kcal/mol-e, but the top two rows of Fig. 8 use the color
scale to plot isosurfaces of only±2.5 and±5.0 kcal/mol-e). In
contrast, the solvent-induced polarization of the lysine amino
head group projects strong +10 kcal/mol-e potential differ-
ences only slightly beyond the molecular surface. It must be
understood that differences in the electrostatic potential affect
water molecules as correlateddipoles, not an ideal gas of ions,
but the plots establish a clear order of the strength of effects
projected by several chemical groups.

While it is trivial to look at the differences in point charges
betweenQVac andQIPol, the familiar problem of buried charges
and uncertainty in the solutions to REsP calculations17 con-
founds meaningful conclusions based on the partial charges

themselves. Rather, the collective action of the monopole
distribution—the electrostatic field it creates—is essential.
Figure 9 shows how themolecular mechanicsrepresentation
QIPol

�QVac depicts the effects of electronic polarization in ala-
nine, lysine, glutamine, and glutamate. Each panel contains a
view of the molecule in a pose matching a panel from Fig. 7
or 8. The IPolQ charge model does not depict as exten-
sive a difference between the electrostatic fields in a vacuum
and in solution for an obvious reason:QIPol is fitted to the
averageof the electrostatic potentials in each phase, not simply
the solution phase electrostatic potential, implicitly estimat-
ing the energy penalty of electronic polarization with a mean
field approximation. The process of adding restraints to weakly
coupleQIPol andQVac also has the effect of depressing differ-
ences between the electrostatics in each phase (see our previ-
ous publications for more details).18 Virtually anywhere, the

TABLE III. Error in fitting electrostatic potential energy surfaces around the
canonical amino acid dipeptides and some protonated variants. Details of the
charge fitting can be found in the original ff15ipq publication:16 20 conforma-
tions of each dipeptide were used in a simultaneous least squares optimization
of 250 unique charges for the main-chain amino acids.

Error,a kcal/mol-e

Residue Vacuum IPolQ

Non-polar amino acids

ALA 1.80 1.73
GLY 1.93 1.74
ILE 2.02 1.75
LEU 1.98 1.82
MET 2.33 2.18
PHE 1.96 1.65
PRO 1.80 1.89
TRP 2.03 1.74
VAL 1.89 1.68

Polar amino acids

ASH 2.34 1.75
ASN 2.01 1.74
CYS 2.64 2.27
GLH 2.13 1.79
GLN 1.97 1.76
HID 2.10 1.92
HIE 2.19 1.94
LYN 2.30 2.14
SER 2.14 1.84
THR 2.11 1.81
TYR 1.94 1.73

Ionic amino acids

ARG 2.40 1.93
ASP 2.63 2.02
GLU 2.47 1.89
LYS 2.41 1.88
HIP 2.43 1.80

aRoot mean squared error fitting the electrostatic potential (ESP) target throughout the
volume surrounding each molecule but not closer than water hydrogens might reasonably
penetrate during a normal simulation. For vacuum phase charges, the target is just the ESP
of the molecule in vacuum. For IPolQ charges, the target is the average of the vacuum
ESP and the ESP obtained in the presence of a polarizing charge density based on the
time-averaged distribution of SPC/E-b water.
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FIG. 10. Error in reproduction of the quantum electrostatic potential surface byQVac andQIPol. The color scale spans only±2 kcal/mol-e in this figure. Poses
of the dipeptide systems do not correspond to previous figures, but the green circles again indicate the locations of the Ace methyl group for orientation.

polarized quantum mechanical (QM) field was±10 kcal/mol-e
stronger than the QM field in a vacuum, the molecular mechan-
ics representationQIPol depicted a field±5 kcal/mol-estronger
than QVac, but close inspection shows that the differences
between fields created byQIPol andQVac were never quite as
extensive as their QM counterpart.

The overall error in charge fitting for each of the main
chain amino acids is shown in Table III. Clearly, the monopole
distribution in ff15ipq and its variants (partial charges on
all atomic nuclei) were better able to reproduce the electro-
static potential we posited for the amino acids in solution
(the average of potentials due to the polarized and unpolarized
wavefunctions) than the electrostatic potential due to the amino
acids’ unpolarized wavefunctions. Underneath the mean val-
ues, the error in each molecular mechanics approximation pos-
sessed its own structure, as illustrated in Fig. 10. For all of the
amino acids presented, there were numerous correspondences:
both QVac and QIPol make many of the same compromises,
over- and under-estimating their respective electrostatic poten-
tial targets in the same way throughout the space around each
molecule. Some of this must have occurred because of the weak
coupling betweenQVac andQIPol but partial charges situated
on nuclei can systematically fail to reproduce many details of
molecular electrostatics.25

The primary motivation for building the canonical ff15ipq
bonded parameters with a set of gas phase charges was to
properly handle the gas phase quantum potential energy sur-
faces that formed the basis of the bonded parameter fitting.
The error with which the molecular mechanics representa-
tion could reproduce these potential energy surfaces (PESs),
scanning torsion profiles and angle flexing, was also depen-
dent on the charge set. As expected, the gas phase charges

QVac afforded better reproduction of the quantum PES for
systems containing polar and non-polar residues (including
the terminal residues Ace and Nme). However, this trend was
not absolute: bonded parameter fitting in systems containing
any ionic residues tended to improve withQIPol as shown in
Fig. 11. At present, we have no explanation as to why, but the

FIG. 11. Error in bonded parameter fitting in the context of either charge
model. The root mean squared error by which the molecular mechanics model
mimics the quantum potential energy surface was calculated for each of 330
unique systems in the ff15ipq bonded parameter training. Points lying above
the 1:1 trend line indicate that the error in data fitting was lower when using
QVac in the molecular mechanics energy function. Points below the trend line
indicate that bonded parameters were easier to fit in the context ofQIPol. About
a dozen systems contained both cationic and anionic residues: these are the
donut points with a green dot inside a yellow circle.
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fact that the error in the electrostatic PES also tends to be the
worst for ionic residues in a vacuum may offer a clue.

IV. DISCUSSION

Through extensive collection of long molecular dynamics
trajectories, we have tested the contribution that each charge
set makes to the quality of simulations performed with ff15ipq.
While there is still uncertainty in the results, it seems fair to
claim that a polarized charge model is essential for simulating
proteins accurately, while accounting for the vacuum envi-
ronment of the target quantum single-point energies yields an
incremental improvement when developing non-polarizable
molecular models. Almost nowhere does running simulations
with an unpolarized, gas phase charge set give better results
than simulations with polarized charges (regardless of how the
bonded parameters were developed), and while there are select
cases where either canonical ff15ipq or ff15ipq-Qsolv per-
forms better than the other, it is more evident that both models
fail to reproduce challenging quantities such as the melting
profiles of helical peptides.

The most striking success of ff15ipq-Qsolv over the
canonical force field is in the helical content of K19, but
this must be taken along with the fact that it vastly overes-
timated the helical content of the similar AAQAA3 system
and shows signs of increased helicity in p53 N-terminal pep-
tide and the GB1 hairpin system. The potentials of mean force
in Fig. 2 help explain both results: the region ofα-helicity
is favored in the case of ff15ipq-Qsolv for both alanine and
glutamine amino acids but not lysine, conceivably stabilizing
AAQAA 3. However, if the tetrapeptide PMFs are indicative
of the behavior in oligomers, the results hinge on changes of
about 0.5 kcal/mol. (The color axis on the difference plots
spans±2.5 kcal/mol, but the limits are only reached in high-
energy regions of each landscape.) Such differences are within
the error of the data fitting underlying each of the force fields
tested.

The over-stabilization ofα-helices in force fields devel-
oped in the manner of ff15ipq-Qsolv has been observed
before, but the results are not consistent.26 Both of the other
major Amber force fields, including ff99-SB and its progeny
as well as ff03,27 were found to emphasize helicity in a dis-
ordered fragment of the amyloidβ protein. CHARMM-27
with CMAP corrections was found to do the same. With the
exception of ff03, all of these force fields take what is more
or less and polarized charge set and use it as the basis for fit-
ting torsion parameters against gas-phase quantum data at the
MP2 level. However, the Amber ff03 model harkens more to
the ff15ipq-Vac variant we tested: a charge set designed for
the interiors of proteins that would be expected to have rela-
tively little solvent-induced polarization was used as the basis
to develop torsion parameters against quantum data created in
a similar continuum dielectric environment. Furthermore, the
α-helical content of ff99-SB (a model with polarized charges
and backbone torsion parameters fitted in the context of those
charges against quantum data at the MP2/cc-pVTZ level of the-
ory) was found to be too low specifically on the K19 system.4

It was raised to nearly the experimental value in ff14-SB with
ad-hocadjustments to backbone dihedrals. While it remains

difficult to attribute any of this behavior to any one aspect of
each biomolecular model, a fully automated protocol offers
the chance to systematically improve the accuracy of the data
fitting with more sophisticated force fields and hopefully one
day to see the effects of each physical assumption through the
noise that we must contend with today.

While it is in principle better to account for the phases
of the charge model and quantum data in bonded parameter
development, error of the data fitting was also one of the initial
motivations to pursue the dual charge models in IPolQ force
fields. Early in production of ff14ipq (data not published), it
was found that the Cornell charges, which were somewhat less
polar along the backbone than the ff14ipq IPolQ charge set,
gave better fits to our backboneφ/ψ scans. A more thorough
investigation of the ff15ipq charges reveals that this picture is
incomplete: while the vacuum phase charge set does improve
the bonded parameter data fitting for the neutral amino acids,
the data fitting worsens for charged amino acids. This behavior
parallels data fitting in the charges themselves: the electrostatic
fields from vacuum phase quantum calculations are consis-
tently harder to fit, at least with nuclear-centered charges, than
fields from calculations with polarizing charge densities sur-
rounding the quantum system. It will be interesting to test
whether this trend holds when including additional monopoles.
Either set of molecular mechanics chargesQVac or QIPol devi-
ates from its quantum benchmark in a convoluted fashion, but
Fig. 10 suggests that an improved monopole distribution which
improves the accuracy of either charge set will also benefit the
other.

Analysis of the quantum mechanical electrostatic poten-
tials shows that the most significant polarization occurs in
carbonyl and carboxylate groups, but that peptide and amide
groups show polarization throughout the C==O and N−−H
moities. Increasingly negative potentials around the carbonyl
and positive potentials around the secondary amine lend crit-
ical stability to interactions between protein backbones in all
of the major secondary structures, but the polarization cannot
be over-emphasized lest the proteins become over-stabilized
together in their initial configurations or coaxed to prefer one
secondary structure over another. By construction, the IPolQ
molecular mechanics model only shows up to half of the polar-
ization evident in the underlying quantum calculations, to
account for the polarization energy penalty with attenuated
non-bonded interactions.

The stability of globular proteins and distributions of
structures seen in smaller polypeptides indicate that the polar-
izedQIPol charge set can strike a good balance depending on
how the angle and torsion parameters are developed to com-
plete the force field. If the bonded parameters are developed
from gas-phase quantum potential energy surfaces in the con-
text of the appropriate charge setQVac, the resulting force
field models approximately the same stability in small peptides
regardless of which charge model is finally included in simula-
tions, as shown in Figs. 1 and 3. This finding is consistent with
Fig. 2, showing that the energy landscapes of individual amino
acids do not hinge on the charge model as much as the manner
in which the bonded parameters were derived. However, ter-
tiary structures cannot remain stable without the correct charge
set for simulations in water, and ifQIPol is necessary, the
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effects of polarized charges on the bonded parameter fitting
are influential in the energy landscapes of individual amino
acids and up to the level of small peptides, making significant
changes in the balance ofα-helical andβ-sheet populations.
Whether these effects would also extend to the tertiary struc-
tures is an open question until more strenuous sampling meth-
ods and faster computer hardware extend simulations to this
level.

SUPPLEMENTARY MATERIAL

See supplementary material for parameters of ff15ipq-
Vac and ff15ipq-Qsolv provided in Amber file formats.
This information is available free of charge via the internet
at aip.jcp.org.
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